If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8b^2+56b+80=0
a = 8; b = 56; c = +80;
Δ = b2-4ac
Δ = 562-4·8·80
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(56)-24}{2*8}=\frac{-80}{16} =-5 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(56)+24}{2*8}=\frac{-32}{16} =-2 $
| 15-4x=6(x-11) | | 3(7x+9)=195 | | 2x=7x+4 | | -v/3=-53 | | 245=6x-4 | | 9(4x-5)+7(2+x)=227 | | (X+6)+x=120 | | w1/3=91/3-1 | | 54=6x+12 | | -4z+17=-4z+17 | | 17=n-(.25n) | | 3x−1=-2x+39 | | 10x-5+8x-13=170 | | 8x-9°=53° | | 34x-3x=85 | | 5p(2p−7)=0 | | 2k+9=27 | | 24+6s=-48 | | 0=2(x^2+6x-744) | | -6x+1=17 | | 10/x+11=25/−3x | | 8(9y+5)=472 | | 40y=-240 | | 0=2(x^2+5x-696) | | 4.6g+3=1.6g+21 | | 4x-1=-20 | | 4x+30-400=0 | | 6(5y-3)+4(2+y)=228 | | 2y-6=3.6 | | 4.5g+8=1.5g+26 | | 1−8x=56. | | 2x-2+3x=5(x-1)+3 |